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Abstract—Acquiring concepts from experience is a key aspect
of development and one that is commonly neglected in learning
agents. In this work, concept acquisition is formulated as an
unsupervised learning problem and is addressed with a novel
algorithm: kx-trees. kx-trees differ from prior approaches to
unsupervised learning in that they require very little information;
four user selected parameters determine all aspects of kx-trees’
performance. Notably, and in contrast with most other unsuper-
vised learning approaches, they do not require that the input state
space be well-scaled. kx-trees’ operation is described in detail and
illustrated with two simulations. The second simulation shows
some similarities between kx-trees and feature construction in
the human visual processing system.

I. INTRODUCTION

In developmental agents, creating abstract representations is
an important aspect of learning. Unless an agent starts out with
a pre-programmed set of concepts, it must generate them from
experience. One method for doing this is to group observations
into clusters, which clusters are then treated as concepts. Clus-
tering state observations is a type of unsupervised learning.
(A wide-ranging review of unsupervised learning methods
can be found in [1, ch. 10].) Unsupervised learning allows
agents to create higher-level concepts from their experiences.
Expressing raw experiences in more abstract terms greatly
decreases the size of the agent’s input space. This in turn lets
the agent use more powerful learning, perception, and planning
algorithms that can only operate effectively in modest state
spaces.

In this work, state observations are grouped into a small
number of clusters. Each dimension in the state space repre-
sents a separate state variable. What separates this work from
previous unsupervised learning methods is that it does not
assume that state dimensions are ordered fields. That is, it does
not assume that 1 is less than 2 or that the distance from 1
to 2 is less than the distance from 1 to 1000. As a result, this
method can be applied to a wide variety of data, including
continuous, discretized, categorical, binary, and hybrid data
types.

The algorithm used here for clustering possibly non-ordered
fields is a binary decision tree. Initially the entire state space
represents a single cluster. The state space is then repeatedly
subdivided into regions, with some of the regions representing
clusters. Each subdivision is represented by splitting a leaf
node into two new leaves. A subset of the tree’s leaves are

the clusters. The dimension along which to divide each leaf
is chosen so as to maintain and isolate clusters as much as
possible. A tree that chooses when and where to divide solely
on the basis of the data distribution is said to have the X-
property [2]. In order to distinguish between this and other
tree-based tools (including Decision Q-Trees [3], S-trees [4],
and T-Trees, an extension of Continuous U-Trees [5]) it will
be referred to as an kx-tree.

In this paper, I present a detailed description of kx-trees,
together with two implementations demonstrating their opera-
tion. One kx-tree is used to find clusters in a two-dimensional
state space. A second kx-tree is used with digital images to
find visual primitives similar to those found in human cortical
area V1.

II. METHOD

kx-trees are conceptually similar to other decision tree based
algorithms, but differ in the specifics of their implementation.
Although the most well known implementations of decision
trees are CART [6] and C4.5 [7], a concise overview of a
wide variety of decision trees is given in [8]. A decision tree
is defined by how it answers the three questions 1) When
to split a node, 2) Where to split that node, and 3) When
to stop splitting a node. (Some trees also answer a fourth
question—When and how to prune branches from the tree—
but kx-trees do not use pruning.) After describing the structure
and populating process of a leaf, this section answers those
questions for kx-trees.

A. Leaf structure

Each leaf represents an explicitly bounded region of the
state space. When defining the initial leaf that encompasses
the entire state space, upper and lower bounds on all input
dimensions must be known or assumed. As a leaf is divided,
the bounds of its children are created using the decision
boundary. In this way, the leaves form a non-overlapping set
of regions that completely cover the state space. (See Figure 1)
Each leaf is a hyperbox, defined by minimum and maximum
values in each dimension of the state space.

Each leaf represents a single region. Each node on the
tree represents a super-region, the combination of the regions
defined by its children, which themselves may be either leaves
or branch nodes. Most tree-based learning tools are supervised
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Fig. 1. a) A partitioned state space and b) the decision tree representation of
that partitioning. The top node in the tree represents the entire state space. It
also indicates the division of the space into its left and right halves along the
line x = 0.5. Leaf nodes in the tree represent individual regions as labeled.
Any internal node on the tree represents the union of all of the leaf node
regions that fall under it.

learning algorithms, rather than unsupervised. Observations
of input states are typically accompanied by categories, in
classification problems, or values, in regression problems. kx-
trees differ from these. The leaves of a kx-tree do not provide
an estimate of a reward, value function, or class membership.
Instead, kx-trees identify locally dense regions of state activity.
In addition, kx-trees subdivide clusters once they exceed a
predetermined size. The motivating assumption behind kx-
trees’ partitioning heuristic is that useful concepts capture a
roughly fixed number of observations. If a concept represents
very few observations, it provides only limited abstraction, and
if it represents a very large number of observations, it may be
too general to be useful.

B. When to split a node

A kx-tree node becomes eligible to split when the number
of observed states it contains exceeds a user-defined threshold,
M . Each observation that falls within a given region of state
space is a member of that region. When a node has more than
M members, it is considered ripe for bisection. However, each
member has a finite lifetime, L, also defined by the user. As a
result, a node is ready to split when more than M of the last
L state observations fall within its region of state space.

C. Where to split a node

The objective of a kx-tree is to find clusters of observations
and bound them tightly. Each cluster represents a concept,
a feature, or a closely related group of states. Tighter bounds
give a more concise concept definition. Therefore, when a node
is bisected, the dimension along which to split and the value
at which to split it are chosen such that the cluster is preserved
as much as possible. For all admissible splits, the split which
maximizes the disparity between the number of members in
each child is selected. If more than one candidate split achieves
the maximum value, then the split value is randomly selected
from among them.

More formally, for an admissible split (d, x) along dimen-
sion d at value x, the quality of the split, q is given by

qd,x = |ma −mb| (1)

where ma is the number of members from the parent node
that would fall under one of its children for that split and mb

is the number of members that would fall under the other child
node. Quality is symmetric with respect to ma and mb. The
winning split fulfills the condition

(d, x)winner = max
d∈D

(max
x∈Xd

qd,x) (2)

where D is the set of all state space dimensions and Xd

is the set of all admissible split values for dimension d.
The admissible split values in Xd divide the region along
dimension d roughly in half. Xd is generated by taking a
number of evenly-spaced values along d. More specifically, if
dmin and dmax are the limits of d in the region to be divided,
then N admissible split values can be generated:

dlow = dmin +
1

4
(dmax − dmin) (3)

dhigh = dmin +
3

4
(dmax − dmin) (4)

xi = dlow + (dhigh − dlow)
i

N + 1
, ∀i ≤ N (5)

The resulting values of Xd fall between, but do not include,
one quarter and three quarters of the range of d. N is a user-
selected constant.

D. When to stop splitting a node

Due to the fact that members have a limited lifetime, an ex-
plicit stopping criterion is typically unnecessary. The splitting
condition of accumulating more than M members within any
interval L becomes harder to achieve as regions get smaller.
With any continuous distribution of observations, the member
accumulation rate will approach zero as region size approaches
zero. However, when processing discontinuous distributions
(as with categorical or discretized data), observations may be
grouped at a single value, prompting endless repeated splits.
This can occur whenever a region’s range in a given dimension
is less than the discrete resolution in that dimension. A method
for handling this degenerate case is to specify a threshold for
the minimum region size in each dimension. This can either be
a constant ϵ that is the same for each dimension or a vector E
with separate values for each dimension. Further divisions are
not allowed along any dimension for which dmax − dmin < ϵ.
The same effect could be achieved by adding a small amount
of noise (ϵ) to each observation.

E. Clusters

kx-trees seek to isolate groups of members into clusters. A
leaf node becomes a cluster when it collects more than M/2
members. Thus, when a node is divided, one of the children
will become a cluster and the other will not (although it may
eventually become one too), and the parent node ceases to be
a cluster. Once a leaf node is designated a cluster, it remains



one, even if the number of members it contains falls below
M/2. Cluster nodes represent concepts, the categories into
which most of the data fall, or features which are common in
the data.

Once clusters have been formed, they serve as a means of
interpreting new states. A single state observation is a point
in state space; if it falls within the hyperbox of a cluster, the
data point can be represented more abstractly as that concept.
But typically, clusters do not provide complete coverage of
the state space. In order to find a conceptual interpretation
of points that do not fall within a cluster, a similarity or
distance measure can be used to identify the nearest clusters.
The similarity measure kx-trees use reflects the fraction of
dimensions in which an observation matches a cluster. The
similarity, σ, between a state s and a cluster c in an n-
dimensional space, S, is given by

σ(s, c) =

∑n
i=1 in(s, c, i)

n
(6)

where

in(s, c, i) = 1, if si ≥ cimin and (7)
si < cimax

= 0, otherwise

where si is the value of s, cimin is the minimum value of c,
and cimax is the maximum value of c, all in the ith dimension.
The corresponding distance measure, δ, is given by

δ(s, c) = 1− σ(s, c) (8)

If s falls within c for all dimensions, then δ = 0 and
σ = 1. If s falls within c in only half of the dimensions,
δ = σ = 1/2. The distance measure takes no account of
how far outside a cluster a state may fall. Only matching
and non-matching are reflected in the distance. In this way,
the distance measure is similar to Hamming distance, but is
extended to apply to real valued vectors and is normalized to
fall within the range [0, 1]. In fact, for binary state spaces,
the modified Hamming distance of Equation 8 reduces to the
actual Hamming distance divided by the number of state space
dimensions, n. It should be noted that this is a departure
from many other unsupervised learning approaches, which
use Euclidean distance. The modified Hamming distance and
modified Hamming similarity avoid making the assumption
that the state space is well scaled or that its dimensions are
ordered fields, and this allows it to be applied to a wider range
of problems.

F. Coordinate transformation to feature space

Combined with the modified Hamming similarity, clusters
can be used to reinterpret states. The vector of similarities
between a state and each of the clusters translates that state
into a new state space, S ′, in which each dimension represents
a cluster. The new state, s′, is given by

s′ = [σ(s, c1), σ(s, c2), . . . σ(s, cn′)] (9)

where n′ is the total number of clusters and the dimension-
ality of the new state space.

Multiple clusters may lie very near each other in S, such
that a state falling completely within one cluster may have
high similarity to other clusters as well. This would cause
dimensions in S ′ to behave as if they were highly non-
orthogonal.

A pseudo-orthogonal state space can be formed by using a
winner-take-all projection onto S ′:

s′ = [0, 0, 0, . . . , σ(s, ci), . . . , 0, 0, 0] (10)

where similarity for the ith dimension is a maximum:

σ(s, ci) ≥ σ(s, cj), ∀j ̸= i (11)

If this condition holds for more than one dimension, the
winner is randomly selected from among them. By forcing s
to project onto only one dimension in S ′, the relative contri-
butions of neighboring clusters remain clearly distinguishable.

Transforming observations from S to S ′ re-expresses them
in terms of more complex features of the input space. This
process converts low-level data into somewhat higher-level
features. In the cases where n′ < n, it also results in a
dimensionality reduction.

It is noteworthy that the inputs and the outputs of kx-trees’
coordinate transformation are both in the same form: vectors
with real-valued elements. As a result, multiple kx-trees can be
arranged hierarchically with the output of one serving as input
to another. It is expected that with each level in the hierarchy,
the feature representation would become increasingly abstract.
This phenomenon is the subject of current research.

III. SIMULATIONS AND RESULTS

A. Simulation 1: Clustering example

The first simulation reported here is a simple but illustrative
example. In it, a pair of arbitrarily selected two-dimensional
normal distributions were used to generate random points in a
two-dimensional state space. The defining parameters for the
kx-tree were chosen as follows:

Anomaly lifetime, L = 100
Maximum number of members, M = 40
Number of split candidates per dim., N = 101
Minimum category size, ϵ = 0

The kx-tree processed the points as they were generated,
creating a partition of the state space and finding the cluster
leaves associated with it.

The results for simulation 1 are shown in Figure 2. The
two normal distributions produced two groups of points, and
the recursive partitioning of the space produced cluster nodes
corresponding to the densest portion of each group. The tree in
Figure 3 provides an alternative representation of the partition
in Figure 2 and shows two major branches, one corresponding
to each of the clusters. Figure 4 shows how the state space,



S, maps onto the feature space, S ′, defined by the clusters.
Simulation 1 was run until a stable tree structure was achieved,
that is, no new nodes were created for a substantial period
of time. Simulation 1 provides an illustration of kx-tree’s
operation on a simple problem and is intended to provide an
intuitive basis for understanding the results of simulation 2.

Fig. 2. Two dimensional state space as partitioned by an kx-tree. The
two normal distributions produced clearly separated groups of points. Each
bisection is shown by a line on the bisection boundary. Each region represents
a leaf node. Cluster nodes are shaded gray and correspond to the densest part
of each data distribution.
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Fig. 3. Tree representation of the partitions shown in Figure 2. The root node
of the tree represents the entire state space. Each branching represents a split
at the line given by the corresponding equation. The right branch represents
the region to the right or above the split. Unfilled boxes on leaf nodes show
regions that are not clusters. The two gray filled boxes show the clusters.
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Fig. 4. Mapping from state space S to feature space S′. Values of s′ are
given for each region in s, by color.

B. Simulation 2: Vision

In the second simulation, kx-trees were applied to grayscale
images to find simple visual features. The simulation was
designed to be similar to the human visual processing sys-
tem. The images were taken from the CalTech-256 image
database [9]. Images were randomly selected, Gaussian blurred
with a pixel radius of 6, then downsampled by a factor of 4
(such that the resulting image had 1/16 the number of pixels).
This was done to remove the small-scale artifacts of JPEG
compression. Then, images were convolved with a center-
surround difference filter in order to mimic the retinal and
thalamic processing that results in center-surround receptive
fields for neurons entering layer 4 of cortical area V1 [10].
Each pixel value in the resulting center-difference image was
obtained by taking the original pixel value and subtracting a
fraction of the value of each of its neighbors: one-sixth for
the four pixels with which it shares a border and one-twelfth
for its four diagonal neighbors. The resulting difference value
had the range of [−1, 1]. Three-by-three pixel groups were
taken in a systematic raster tiling from the difference image
and processed using an kx-tree. After the image had been
completely scanned, a new image was selected and the process
repeated. The nine-dimensional state space was partitioned and
clusters were identified. The defining parameters for the kx-
tree were chosen as follows:

Anomaly lifetime, L = 1000
Maximum number of members, M = 70
Number of split candidates per dim., N = 1
Minimum category size, ϵ = 1.0

Choosing N = 1 ensured that all splits would be perfect
bisections, and choosing ϵ = 1.0 ensured that no dimension
would be split more than once. The resulting partition had a
maximum of 29(512) distinct regions.

The result of running simulation 2 for 200,000 observations
was a set of clusters in the nine-dimensional state space,
shown in the top panel of Figure 5. As shown in the bottom
panel, these can be notionally compared to the receptive fields
identified in the human visual cortex, which have exhibited
strong characteristics of directionality [10]. While the corre-
spondence is too loose to be conclusive, it suggests that kx-
trees may produce feature representations that are similar to
those produced by the human neocortex.

A difference image can be reconstructed from the feature
space representation by breaking it into 9-pixel tiles, trans-
forming each tile from S to S ′, and then transforming them
back to S. The forward transformation given in Equation 9
was used here. The inverse transformation from S ′ to S was
achieved by finding the centroid of each cluster hyperbox,
weighting it by the value of that dimension in s′, and linearly
summing the results for all clusters. The results of the inverse
transformation illustrate which elements are captured in the
feature representation. A richer feature set will result in a
higher-fidelity reconstructed image. The results of three such
reconstructions are shown in Figure 6.



Fig. 5. Top: Graphical representation of the 29 clusters found in the space of
9 pixel groups. In each cluster, dimensions (pixels) that have been bisected are
represented as white or black, depending on whether the cluster falls above or
below the bisection. Pixels in gray have not been bisected. Bottom: Strongly
oriented stimuli, matched to each cluster above. Most of the clusters have
unbisected pixels, and hence ambiguous receptive fields. While not unique,
these stimuli would each be a match for their corresponding cluster in the top
panel.

Fig. 6. Original grayscale images (left, taken from [9]), difference images
(center), and reconstructed difference images (right), based on the features
from Figure 5. The difference images show the derivative of the gradient in the
images and mimic the information retained by the center-surround processing
performed by the human visual system. The reconstructed images retain the
larger-scale features from the difference images.

IV. DISCUSSION

Concept acquisition is an important aspect of development
and learning, clearly evident in the cognitive processes of
humans and animals. In this work, concepts are defined
as clusters of lower-level observations. While this definition
does not satisfy all theories of what a concept is, it does
provide a useful basis for beginning an investigation of the
topic. Formulated this way, the problem of concept acquisi-
tion becomes a clustering or unsupervised learning problem.
Acquired concepts can be high level and very abstract, or
low level and quite specific. In either case, clusters of state
observations are identified and used to represent the underlying
states.

A. Relation to other work

A decision tree is a natural representation for the iterative
division of categories. Each leaf represents a terminal category.
Each node represents both the super-category formed by
combining its two children, as well as the decision boundary
used to differentiate between them. (See Figure 1) Several
tree-based adaptive partitioning algorithms have been previ-
ously proposed. The Parti-Game algorithm [11] uses a greedy
controller to crawl through a partitioned state space. When
the controller fails, the last visited subspace is divided. Parti-
Game is specifically geared to geometric path planning; it
assumes that all paths through the state space are continuous.
The G Algorithm [12], U-Tree [13], Continuous U-Tree [14],
AMPS [15], and decision trees of Pyeatt and Howe [16] are
all approaches used in conjunction with dynamic program-
ming methods or the popular temporal difference method, Q-
learning [17], to estimate the value function across the state
space. Whenever a subspace’s value estimate is shown to be
inadequate, the subspace is divided. The G Algorithm handles
binary data, U-Trees handle discrete data, and Continuous
U-Trees, AMPS, and Pyeatt and Howe’s approach handle
continuous data.

Taking a broader view, kx-trees are a member of the set
of unsupervised learning methods, that is, methods that group
data that is unlabeled and unclassified. Also referred to as
clustering algorithms, there are many unsupervised learning
methods developed with different sets of assumptions, but kx-
trees provide a novel collection of characteristics. kx-trees are
an on-line, hierarchical, divisive clustering algorithm. They
are stable in the sense that cluster boundaries do not move.
kx-trees are most notable for what they don’t assume. Unlike
many clustering algorithms, kx-trees operate without assuming
1) how many categories exist in the underlying data, 2) that
prior probabilities of any category are known, 3) that prior
probabilities are stationary, and 4) that the forms of the class
conditional probabilities are known. Once the dimensionality
and range of the state space is defined, kx-trees always start
from the same initial conditions, so there is no need to
carefully pick initial values for cluster parameters. Only the
four operating parameters L, M , N , and ϵ need to be selected.
One of kx-trees’ greatest strengths is that it does not assume
that the input space is well scaled or even linear. In fact,



kx-trees’ distance metric, the modified Hamming distance,
does not even assume that each of the input dimensions
is an ordered field. As a result, kx-trees can handle inputs
consisting of enumerated types, such as {vanilla = 1, chocolate
= 2, strawberry = 3, pistachio = 4}. And their computational
demands are modest.

kx-trees’ strength comes at a cost, of course. They bound
clusters with hyperboxes, so clusters that are not well fit by
a hyperbox may not be concisely represented. If M is large,
kx-trees can require a relatively large amount of data before
useful clusters are generated. They are unstable in the sense
that the total number of clusters created can, under certain
conditions, grow without bound if not artificially limited. Like
other unsupervised learning methods in which the number of
clusters is not specified, the validity of the clusters found
depends entirely on the appropriateness of the measure of
cluster goodness (the node-splitting criterion in the case of
kx-trees). And, like other unsupervised learning algorithms of
its class, there are no theoretical performance guarantees.

B. Relation to other biologically motivated methods

The performance of kx-trees on identifying visual features
similar to the receptive fields of V1 is suggestive, but incon-
clusive. It indicates that further investigation of kx-trees as
a biological learning and concept acquisition mechanism is
warranted.

There are several other approaches to the problem of
concept acquisition that are motivated by theories of human
psychology and neuroscience. Hierarchical Temporal Memory
(HTM) [18] uses on a hierarchy of Bayesian classification
elements to cluster data into concepts (“causes”) and to infer
likely causes for a given set of inputs. Adaptive Resonance
Theory (ART) [19] uses neural networks to bound clusters
of states within hyperboxes. Like kx-trees, both HTMs and
ART are online methods, meaning that they can incorporate
new state observations and update their results incrementally.
However, HTMs and ART differ from kx-trees in that they
use a Euclidean distance metric to determine the similarity
between states. For Euclidean distance to be valid, the state
space must be well scaled, that is, a unit step in each dimension
must represent the same magnitude of change. This is a
somewhat restrictive condition that kx-trees do not need to
meet. Because kx-trees do not use Euclidean distances (or any
p-norm), they do not require well-scaled state spaces.
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